
Board of Governors of the Federal Reserve System

International Finance Discussion Papers

ISSN 1073-2500 (Print)
ISSN 2767-4509 (Online)

Number 1352

August 2022

Pandemic Priors

Danilo Cascaldi-Garcia

Please cite this paper as:
Cascaldi-Garcia, Danilo (2022). “Pandemic Priors,” International Finance Discus-
sion Papers 1352. Washington: Board of Governors of the Federal Reserve System,
https://doi.org/10.17016/IFDP.2022.1352.

NOTE: International Finance Discussion Papers (IFDPs) are preliminary materials circulated to stimu-
late discussion and critical comment. The analysis and conclusions set forth are those of the authors and
do not indicate concurrence by other members of the research staff or the Board of Governors. References
in publications to the International Finance Discussion Papers Series (other than acknowledgement) should
be cleared with the author(s) to protect the tentative character of these papers. Recent IFDPs are available
on the Web at www.federalreserve.gov/pubs/ifdp/. This paper can be downloaded without charge from the
Social Science Research Network electronic library at www.ssrn.com.



Pandemic Priors

Danilo Cascaldi-Garcia∗

Federal Reserve Board
danilo.cascaldi-garcia@frb.gov

July, 2022

Abstract

The onset of the COVID-19 pandemic and the great lockdown caused macroe-
conomic variables to display complex patterns that hardly follow any historical
behavior. In the context of Bayesian VARs, an off-the-shelf exercise demonstrates
how a very low number of extreme pandemic observations bias the estimated persis-
tence of the variables, affecting forecasts and giving a myopic view of the economic
effects after a structural shock. I propose an easy and straightforward solution
to deal with these extreme episodes, as an extension of the Minnesota Prior with
dummy observations by allowing for time dummies. The Pandemic Priors succeed
in recovering these historical relationships and the proper identification and prop-
agation of structural shocks.
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1 Introduction

The onset of the COVID-19 pandemic and the subsequent great lockdown affected our

lives and our jobs in an unprecedented way. Macroeconomic variables, which are quanti-

tative mirrors of these effects, displayed complex patterns that hardly follow any historical

behavior. Figure 1 exemplifies this unique situation. The variations in the U.S. industrial

production and unemployment rate from April to August 2020 were the largest by far

since at least 1976. From an empirical perspective, this episode poses a challenge on

how to deal with such unusual behavior and still be able to retain historical relation-

ships, produce reliable forecasts, and provide correct interpretations of economic shocks.

I propose an easy and straightforward solution to this challenge, by allowing for irregular

relationships of macroeconomic variables in extreme episodes, but conceding that there

is uncertainty about these estimations.

Figure 1 Industrial production and unemployment rate variation over time

Note: Scatter plot of historical monthly changes of industrial production and unemployment rate. Blue
dots correspond to the entire sample (February 1976 to March 2022), and red dots to the most extreme
periods of the COVID-19 pandemic (April to August 2020).

Bayesian vector autoregressions (VAR) are at the core of the macroeconomic empiri-

cal literature and are widely used by researchers, market participants, and policymakers

for forecasting and the understanding of economic shocks. The seminal work of Litter-

man (1986) introducing the Minnesota Prior and future implementation developments
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(Bańbura, Giannone, and Reichlin, 2010, Del Negro and Schorfheide, 2011, Carriero,

Clark, and Marcellino, 2015, among others) allowed for computationally feasible estima-

tions of large information sets that overcome the curse of dimensionality. I propose an

extension of such procedure to allow for time dummies with uninformative priors, namely

Pandemic Priors, which are able to correctly adjust the historical relationship among the

variables for the extreme values observed in specific periods.1

With an off-the-shelf empirical example, I show that indeed a very low number of ex-

treme observations during the period of March 2020 to August 2020 imply biased autore-

gressive coefficients, affecting the estimated historical relationship among the variables,

forecasts, and giving a myopic view of the economic effects after a structural shock. The

Pandemic Priors, in turn, succeed in recovering these historical relationships, as confirmed

by a Monte Carlo exercise, and the proper identification and propagation of structural

shocks. Importantly, the simplicity of the method allows it to be adapted to any con-

ventional or state-of-the-art structural identification procedure, enabling pre-pandemic

conclusions to be extended and replicated going forward.

The procedure is akin to Lenza and Primiceri (2021), who propose a method of esti-

mating VARs by modeling a common shift and persistence of the volatility of the shocks

during the extreme periods of the pandemic. The method takes the assumption that the

volatility of all shocks were scaled up by exactly the same constant and decay by exactly

the same rate, so it is possible to establish priors and estimate these scale parameters.

I propose a simpler and more parsimonious approach: allowing direct intercept shifts

during the pandemic period, which removes the need to assume common volatility scale

shifters and persistence. In fact, under the Pandemic Priors, each variable can potentially

present different shifts and persistence during the COVID-19 period, captured by the in-

dividual time dummies. As such, the method proposed here can be directly implemented

in closed-form through an extension of the dummy observations procedure described in

Bańbura et al. (2010). Still, I show that the Pandemic Priors recover similar impulse

responses to those found when using the Lenza and Primiceri (2021) method. The pro-

1MATLAB and Julia implementations of the Pandemic Priors are available at
www.danilocascaldigarcia.com.
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cedure is also an easy linear alternative to discarding extreme observations, as proposed

by Schorfheide and Song (2021), or to complex setups such as modeling extreme obser-

vations as random shifts in the stochastic volatility of the VAR, as in Carriero, Clark,

Marcellino, and Mertens (2022). The Pandemic Priors approach is also related to Ng

(2021), who proposes augmenting the VAR with an exogenous variable constructed as

the log-differences of the information set during the pandemic period, and to Antolin-

Diaz, Drechsel, and Petrella (2021), who model outliers in the context of dynamic factor

models.

The outline of the paper is as follows. I discuss the technical implementation of

the Pandemic Priors and the Monte Carlo exercise in section 2. Section 3 presents the

implications of the Pandemic Priors in an empirical example of estimating a medium-scale

Bayesian VAR and identifying excess bond premium shocks. Section 4 shows that the

Pandemic Priors recover similar impulse responses to the ones when using the Lenza and

Primiceri (2021) estimation procedure. Section 5 summarizes the findings of this paper.

2 Implementation

The Pandemic Priors proposed here builds on Bańbura et al. (2010), who implements the

traditional Minnesota Prior (Litterman, 1986) through dummy observations, by extending

it to allow for time dummies on extreme observations. The method has the advantage

of easy implementation, and avoiding the curse of dimensionality by allowing for large

vector autoregression models with Bayesian shrinkage.

Following the notation from Bańbura et al. (2010), I take a VAR model with n vari-

ables and p lags as in:

Yt = c+ 1t=ada + ...+ 1t=a+hda+h +A1Y1 + ...+ApYp + ut, (1)

where ut are innovations with E[utu
′
t] = Ψ, c is a vector of n intercepts, da through da+h

are h vectors with n time dummies for a pre-defined number of h periods from a through

a + h (which can be the COVID-19 crisis), and 1t=i is an indicator function that takes
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value 1t=i = 1 for the period set i = a, ..., a+ h, and 0 otherwise.

As in Litterman (1986) and Bańbura et al. (2010), I impose the prior that the variables

are centered around the random walk with a drift, but now extending the concept to the

idea that the pandemic is an abnormal period where the relationship between the variables

may diverge from history. As such, the prior can be represented as

Yt = c+ 1t=ada + ...+ 1t=a+hda+h +Y1 + ut, (2)

which is equivalent to shrinking the coefficient matrix A1 to the identity and the matrices

A2+ ...+Ap to zero. The moments for the prior distribution of the coefficients are set as

E
[
(Ak)ij

]
=

 δi, j = i, k = 1

0, otherwise
V
[
(Ak)ij

]
=


λ2

k2
, j = i

υ λ2

k2
σ2
i

σ2
j
, otherwise

. (3)

The coefficients A1, ..., Ap are assumed to be independent and normally distributed,

the covariance matrix of the residuals to be diagonal, and the prior on the intercept is

diffuse. I take the same diffuse prior stance for the time dummies.

Choices for σi, the overall prior tightness λ, the factor 1/k2, and the coefficient υ are

standard following good practices described in Bańbura et al. (2010), and flexible enough

to accommodate beliefs about persistence, shrinkage toward the prior, variance decrease

over lags, and the importance of own lags. By taking υ = 1, it is possible to impose a

normal inverse Wishart as in the Minnesota Prior under the form

vec(B)|Ψ ∼ N (vec(B0),Ψ⊗Ω0) and Ψ ∼ iW (S0, α0) (4)

where B is the matrix that collects the reduced-form coefficients of the Yt = XtB +Ut

vector autoregressive system, B0, Ψ0, S0, and α0 are prior expectations, and E[Ψ] = Σ,

or the residual covariance of the Minnesota Prior.

In practice, these priors can be easily implemented through a series of dummy obser-

vations. The simplicity of the procedure makes it computationally efficient, allowing for

the estimation of VARs with a large number of variables. I extend the procedure to allow
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for priors for the h time dummies described in equation 1. Formally, the left-hand and

right-hand side dummy observations (Yd and Xd, respectively) are defined as

Yd =



diag(δ1σ1, ..., δnσn)/λ

0n(p−1)×n

...

diag(σ1, ..., σn)

...

0n(p−1)×n


Xd =



Jp ⊗ diag(σ1, ..., σn)/λ 0np×1 0np×h

... ... ...

0n×np 0n×1 0n×h

... ... ...

01×np ϵ 11×h × ϕ


(5)

where Jp = diag(1, 2, ..., p), and ϵ imposes an uninformative prior for the intercept. In

comparison to the Bańbura et al. (2010) implementation, the innovation here is on the

last column of Xd, which imposes priors also for the h time dummies through ϕ (ordered

last in Xt). Following common practice from Litterman (1986), Sims and Zha (1998), and

Bańbura et al. (2010), σj can be calibrated from the variance of residuals of univariate

autoregressive models with p lags for each variable in the information set, and setting ϵ

as a very small number makes the prior for the intercept fairly uninformative. I follow

the same uninformative approach for ϕ.

Combining the original left-hand side data collected on Yt with the dummy obser-

vations Yd as in Y∗
t = [Y

′
t,Y

′

d], and the original right-hand side data collected on Xt

with the dummy observations Xd as in X∗
t = [X

′
t,X

′

d], and adding the improper prior

Ψ ∼ |Ψ|−(n+3)/2, leads to the posterior

vec(B)|Ψ,Yt ∼ N
(
vec(B̃),Ψ⊗

(
X∗′

t X
∗
t

)−1
)

and Ψ|Yt ∼ iW
(
Σ̃, Td + 2 + T −m

)
,

(6)

where T is the sample size, Td is the length of dummy observations, m = np + 1 + h,

B̃ =
(
X∗′

t X
∗
t

)−1 (
X∗′

t Y
∗
t

)
, and Σ̃ =

(
Y∗

t −X∗
t B̃

)′ (
Y∗

t −X∗
t B̃

)
, or the reduced-form

coefficients and estimated residual variance of the OLS estimation of Y∗
t on X∗

t .

If the objective of the econometrician is increased forecast performance, it is possible to

also adapt the dummy observations that impose a no-cointegration prior by constraining
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the sum of the coefficients described in Bańbura et al. (2010) to take into account the

time dummies proposed here. In this case, it suffices to add an extra set of dummy

observations, as in

Ysc = diag(δ1µ1, ..., δnµn)/τ Xsc =

(
11×p ⊗ diag(δ1µ1, ..., δnµn)/τ 0n×1 0n×h

)
,

(7)

where τ sets the degree of shrinkage and µj represents the average level of each j variable

in the information set. The data can then be combined as Y∗
t = [Y

′
t,Y

′

d,Y
′
sc] and

X∗
t = [X

′
t,X

′

d,X
′
sc].

Finally, the Pandemic Priors are able to recover posterior distributions that encompass

the true coefficients from simulated data. I evaluate the method through a Monte Carlo

simulation with four variables, for 600 periods, and emulating large and simultaneous

shocks to each of them that happen at t = 501, but with different size (5 to 20 standard

deviations) and persistence (0.3 to 0.9), mimicking the behavior of economic variables at

the onset of the COVID-19 pandemic.

The exercise shows that the (reduced-form) autoregressive coefficients from the data

generating process are within the support of the posterior distributions when the Pan-

demic Priors are applied, while this is not always true for the Minnesota Prior. The

larger and persistent the shock is, the more distant the estimated Minnesota Prior coef-

ficient will be from the true value. Also, when facing such unusually large shocks, there

is considerably more uncertainty on the autoregressive coefficients with the Minnesota

Prior than with the Pandemic Priors. The full experiment is detailed on Appendix B,

with posterior distribution comparisons in Figure B.6.

3 An empirical example

In this section I present an empirical example of how a few pandemic observations can

markedly change the estimated relationship among macroeconomic variables and the in-

terpretation of structural shocks. I estimate a monthly Bayesian VAR in levels, where the
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information set includes eight endogenous variables,2 namely the excess bond premium

(EBP, Gilchrist and Zakraǰsek, 2012), (log) of the S&P 500 index, Federal Funds shadow

rate (Wu and Xia, 2016), (log) personal consumption expenditures (PCE), (log) PCE

price index, (log) employment, (log) industrial production, and unemployment rate. The

estimation sample runs from January 1975 through March 2022. I include 12 lags, with

fixed overall prior tightness λ = 0.2, and τ = 10 × λ.3 I explicitly model the COVID-

19 crisis by applying the Pandemic Priors, with six individual dummies for the period

March 2020 through August 2020, coinciding with the onset of the pandemic and the very

extreme observations in unemployment rate and industrial production (as illustrated by

Figure 1).

3.1 Pandemic Priors matter for estimation, ...

The estimated time dummies build on the assumption that we should potentially observe

intercept shifts for the macroeconomic variables in the selected periods. The Pandemic

Priors imply that, while we observe the outcome of each variable, there is uncertainty

about this shift. Indeed, there is substantial heterogeneity across variables about the

size of the intercept shift, the timing of such shifts, and persistence. Figure 2 presents

the (reduced-form) posterior distributions from 1,000 draws of the intercept, and the

intercept shift (intercept plus time dummy) for the period March 2020 to August 2020.4

Some variables show quite stable intercepts (EBP and PCE price index), but others show

large shifts, with more pronounced examples in April 2020 for PCE, industrial production,

employment, and unemployment rate. While the coefficient for the S&P 500 shows a large

shift in March 2020 that reverts to stability in other periods, the employment variables

show a substantial persistence of abnormal intercept shifts over the period March 2020

through August 2020. The Pandemic Priors succeed on capturing these heterogeneous

shifts and persistence.

2Table A.1 in the Appendix presents the full description of the dataset.
3Results are robust to different lag selections, and λ and τ specifications, and are available upon

request.
4Figure A.1 in the Appendix shows the posterior distributions for the time dummies, evidencing the

uncertainty around the estimations.

7



Figure 2 Posterior draws for the intercept and pandemic dummies

Note: Histograms of the (reduced-form) intercept and the intercept plus the time dummies for the pan-
demic period (March to August 2020), of each variable in the information set. Distributions constructed
after 1,000 draws from the posterior distribution. The VAR is estimated from January 1975 to March
2022.

While these six extreme months of the pandemic period correspond to only about

1% of the total sample, not treating them as outliers has direct implications on the

(reduced-form) coefficients of the Bayesian VAR. I evaluate this effect by comparing two

exercises. First, as a baseline, I estimate the Bayesian VAR with dummy observations,

but without any pandemic time dummy, as in the off-the-shelf Minnesota Prior procedure

from Bańbura et al. (2010). The assumption of such a method is that the historical

relationship among the endogenous variables have not changed during the pandemic. The
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Figure 3 Posterior draws for the autoregressive coefficients

Note: Histograms of the (reduced-form) autoregressive coefficient of the baseline (blue bars) and the
Pandemic Priors (pink bars) estimations, for each variable in the information set. Distributions con-
structed after 1,000 draws from the posterior distribution. The VAR is estimated from January 1975 to
March 2022.

second exercise applies the Pandemic Priors. Figure 3 presents the posterior distributions

from 1,000 draws of the first lag (reduced-form) autoregressive coefficient of each variable

in the information set, for the baseline and the Pandemic Priors setups.5

The distributions of posterior draws are substantially different between the baseline

and the Pandemic Priors, and there is heterogeneity across variables. While the estimated

coefficients are essentially unchanged for EBP, S&P 500, shadow rate, and PCE price

5The posterior distribution is truncated to stable coefficient sets, discarding non-stationary draws.
Results are also robust to the non-truncated posterior distribution.
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index, the variables with more extreme pandemic observations are also the ones with more

disparate coefficients. Not treating the pandemic observations with the time dummies

would imply a lower autoregressive coefficient for PCE, and the distributions almost

do not overlap. The industrial production coefficient distribution is shifted to the left

with the Pandemic Priors. The employment and unemployment rate variables, which

have more extreme outliers, present opposite effect, with lower autoregressive coefficients

in the baseline setup. Also, there is substantially more parameter uncertainty for the

employment and unemployment rate when using the baseline compared to the Pandemic

Priors.

3.2 ..., for forecasts, ...

With distinct autoregressive and lagged coefficients between the baseline and the Pan-

demic Priors, the persistence of each variable is affected, generating direct implications

for forecasting. I evaluate the effect on the forecasts by estimating the unconditional 12-

month ahead path for each variable implied by the baseline method and by the Pandemic

Priors, as of March 2022, presented in Figure 4.6

As expected, variables where the autoregressive coefficients are essentially unchanged

between the baseline and the Pandemic Priors, such as the EBP, the S&P 500, and the

PCE price index, present very similar unconditional forecasts no matter which model is

estimated. However, variables that are markedly affected by extreme values during the

pandemic, such as employment and unemployment rate, present substantially different

unconditional forecasts, implying different economic interpretations. While the baseline

model indicates that employment would increase for a couple of months and remain stable

over the remainder of the forecast horizon and the unemployment rate would almost

immediately increase, the Pandemic Priors provide a picture where employment still

rises for about 10 months before stabilizing, and the unemployment rate would decrease

for about eight months before increasing.

6Figure A.2 in the Appendix reports the unconditional forecasts over a longer horizon.
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Figure 4 Unconditional forecasts as of March 2022

Note: Solid lines are estimated unconditional forecasts and correspond to the posterior median estimates
(black with Pandemic Priors, and red as the baseline). The VAR is estimated from January 1975 to
March 2022. The gray shaded area and the dashed red lines represent the one standard deviation coverage
bands of the forecasts obtained with 1,000 draws from the posterior distribution.

3.3 ..., and for the identification of structural shocks

The extreme observations also impose a tilted view of the economic effects from structural

shocks. I evaluate this stance by identifying an excess bond premium shock, in the spirit

of Gilchrist and Zakraǰsek (2012) and Caldara, Fuentes-Albero, Gilchrist, and Zakraǰsek

(2016), with the baseline estimation and with the Pandemic Priors. For simplicity, I

identify the excess bond premium shock recursively, as the first shock in the Bayesian

VAR where EBP is ordered first. Of note, the Pandemic Priors are flexible enough to

accommodate any other conventional or state-of-the-art identification procedures, such

as Proxy VARs, sign restrictions, or maximization of the variance decomposition. Figure

5 presents the 12 months ahead impulse response functions of the EBP shock, with solid

black lines for the (posterior mean) responses using the Pandemic Priors and solid red

lines for the baseline.7

The economic effects of an EBP shock using the baseline and the Pandemic Priors

7Figure A.3 in the Appendix reports the impulse response functions over a longer horizon.
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Figure 5 Impulse responses to a 1 s.d. EBP shock

Note: Solid lines are estimated impulse responses to a standard deviation EBP shock and correspond
to the posterior median estimates (black with Pandemic Priors, and red as the baseline). The VAR is
estimated from January 1975 to March 2022. The gray shaded area and the dashed red lines represent the
one standard deviation coverage bands of the EBP shock obtained with 1,000 draws from the posterior
distribution.

estimation differ both in size and propagation, and it is heterogeneous over the variables.

While the expected effects on the S&P 500, shadow rate, and PCE price index are almost

indistinguishable if one uses the Pandemic Priors or not, there are crucial differences

for the other variables. For example, simply ignoring the particular behavior of these

six observations would steer an economist to expect a large and sharp short-term effect

reduction in employment in response to the increased risk. While in the baseline model

employment drops by about 0.15 percent after only two months of the shock, the Pan-

demic Priors imply a smoother and more delayed employment deterioration, reaching

negative 0.15 percent only about nine months after the shock. Similar interpretation

applies to the unemployment rate, which sharply increases by 0.1 percentage point in

the baseline, but only smoothly reaches that level with the Pandemic Priors. PCE and

industrial production also show abnormal short-term responses when the pandemic ob-

servations are not properly treated.
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4 Comparison to Lenza and Primiceri (2021)

The Pandemic Priors are able to recover similar results as with the method proposed

by Lenza and Primiceri (2021), but in a simpler and more flexible way. The authors’

procedure conjectures that the shocks observed at the onset of the pandemic presented

substantially larger volatility. If the volatility of all shocks were scaled up by exactly the

same constant, with exactly the same persistence thereafter (the commonality assump-

tion8), it is possible to establish priors and estimate these parameters. In practice, the

procedure estimates common scale parameters for the volatility of all shocks observed in

March, April, and May 2020, and assumes that the residual variance decays at a fixed

rate after May 2020.

As pointed out by the authors, the commonality assumption is an approximation that

works well in a period in which all variables experienced record variation. However, several

aggregate variables commonly used in monthly VARs to characterize U.S. macroeconomic

relationships did not show unreasonably large variance shocks during the onset of the

COVID-19 pandemic in comparison to historical standards. For example, the S&P 500

index fell by 19% in March 2020, which is on par with the global financial crisis (-20% in

October 2008), and with 10 other events with monthly double-digit variations since 1975.

Indeed, as in the Bayesian VAR example shown on Figures 2 and 3, not all variables seem

to be reactive to potentially extreme values during the March to August 2020 period. The

EBP and the S&P 500, for example, showed relatively stable intercepts and autoregressive

coefficients throughout the most acute period of the pandemic.

In summary, assuming common scalar shifters and a common decay parameter for the

variance of all shocks is a good step to avoid extreme values contaminating the stochastic

process of the variables in the VAR, but may not be the most appropriate when there is

heterogeneity on the size and persistence of the volatility shift. The Pandemic Priors, by

assigning individual dummies for each variable and at each unusual time period, allow

for heterogeneous shifts (both in timing and size) and rate of decay over the information

set. Still, as shown in Figure 6, when replicating the exercise of an EBP shock with

8Also present in the stochastic volatility model of Carriero, Clark, and Marcellino (2016).

13



Figure 6 Comparison of impulse responses to a 1 s.d. EBP shock

Note: Solid lines are estimated impulse responses to a standard deviation EBP shock and correspond to
the posterior median estimates (black with Pandemic Priors, blue with the Lenza and Primiceri (2021)
method, and red as the baseline). The VAR is estimated from January 1975 to March 2022. The gray
shaded area and the dashed red lines represent the one standard deviation coverage bands of the EBP
shock obtained with 1,000 draws from the posterior distribution.

the Pandemic Priors (black lines) and the Lenza and Primiceri (2021) procedure9 (blue

lines), we find results that are almost indistinguishable between the two methods and

quite different from the baseline (red lines) with no controls for the pandemic.

5 Conclusion

Extreme observations, such as the ones observed during the most acute periods of the

COVID-19 pandemic, blur our interpretation of historical relationships among macroe-

conomic variables and the economic effects of shocks. In this paper, I show an easy and

straightforward way of dealing with such episodes in empirical macroeconomics by propos-

ing Pandemic Priors for Bayesian VAR estimations. The assumption is that macroeco-

nomic variables present an abnormal behavior in extreme episodes such as the pandemic,

but resume their historical relationship once conditions normalize. I propose time dum-

9Estimated using the prior selection procedure proposed by Giannone, Lenza, and Primiceri (2015).
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mies for these extreme events that capture such unusual behavior, but accept that there is

uncertainty about its potential outcome by imposing a fairly uninformative prior. While

the COVID-19 pandemic is a natural candidate for such modeling, the method presented

here can also be applied to other periods where the macroeconomic relationship among

the variables are potentially (and temporarily) unusual, such as the zero lower bound.

The empirical example of estimating and identifying an excess bond premium shock

confirms the substantial intercept shifts during the period of March 2020 to August

2020, affecting the estimated historical coefficients, unconditional forecasts, and structural

identification. The Pandemic Priors recover historical relationships, as confirmed by a

Monte Carlo exercise, and the proper identification and propagation of structural shocks,

allowing for estimating Bayesian VARs without having to restrict the sample to pre-

pandemic periods, dropping observations, or resorting on more complex methods, such

as volatility changes or t-distributed shocks. As the Pandemic Priors are flexible enough

to accommodate any sort of structural identification, they also allow policymakers to

make well-informed decisions about responses to economic shocks going forward.
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A Appendix: Tables and figures

Table A.1 Description of variables

Name Description Source

1 EBP Excess bond premium as computed by Gilchrist and Za-
kraǰsek (2012).

Zakrajsek, Lewis,
and Favara (2016)

2 S&P 500 S&P 500 stock index in log levels. Nasdaq Data Link
3 Shadow Rate Fed funds rate shadow rate. Wu and Xia (2016)
4 Consumption (PCE) Real consumption in log levels. Fred
5 Price index PCE Price Index in log levels. Fred
6 Employment PCE Total nonfarm payroll in log levels. Fred
7 Ind. production Real industrial output in log levels. Fred
8 Unemployment rate Number of unemployed as a percentage of the labor force. Fred

Note: All for the January 1975 to March 2022 period, retrieved on May 2022.

Figure A.1 Posterior draws for the pandemic dummies

Note: Histograms of the (reduced-form) time dummies for the pandemic period (March to August 2020),
of each variable in the information set. Distributions constructed after 1,000 draws from the posterior
distribution. The VAR is estimated from January 1975 to March 2022.
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Figure A.2 Unconditional forecasts as of March 2022

Note: Solid lines are estimated unconditional forecasts and correspond to the posterior median estimates
(black with Pandemic Priors, and red as the baseline). The VAR is estimated from January 1975 to
March 2022. The gray shaded area and the dashed red lines represent the one standard deviation coverage
bands of the forecasts obtained with 1,000 draws from the posterior distribution.

Figure A.3 Impulse responses to a 1 s.d. EBP shock

Note: Solid lines are estimated impulse responses to a standard deviation EBP shock and correspond
to the posterior median estimates (black with Pandemic Priors, and red as the baseline). The VAR is
estimated from January 1975 to March 2022. The gray shaded area and the dashed red lines represent the
one standard deviation coverage bands of the EBP shock obtained with 1,000 draws from the posterior
distribution.
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Figure A.4 Comparison of impulse responses to a 1 s.d. EBP shock

Note: Solid lines are estimated impulse responses to a standard deviation EBP shock and correspond to
the posterior median estimates (black with Pandemic Priors, blue with the Lenza and Primiceri (2021)
method, and red as the baseline). The VAR is estimated from January 1975 to March 2022. The gray
shaded area and the dashed red lines represent the one standard deviation coverage bands of the EBP
shock obtained with 1,000 draws from the posterior distribution.
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B Appendix: Monte Carlo simulation

I test the ability of the Pandemic Priors to recover the true (reduced-form) coefficients

by employing the method on simulated data, with a known data generating process. I

produce “abnormal” shocks, affecting all variables simultaneously at a pre-defined time,

but with different size and persistence, emulating the environment observed during the

COVID-19 pandemic. I simulate a stationary system of four variables and two lags, as in

A0



y1,t

y2,t

y3,t

y4,t


= C+A1



y1,t−1

y2,t−1

y3,t−1

y4,t−1


+A2



y1,t−2

y2,t−2

y3,t−2

y4,t−2


+



e1,t

e2,t

e3,t

e4,t


+



e∗1,t

e∗2,t

e∗3,t

e∗4,t


, (B.1)

where ei,t are i.i.d. innovations with mean 0 and standard deviation 1, and e∗i,t are abnor-

mal shocks that happen simultaneously to all variables at a specific time t = t∗, as

e∗i,t =


0, t < t∗

e∗i,t∗ , t = t∗

ρie
∗
i,t−1, t > t∗

. (B.2)

I simulate data for 600 periods, with structural coefficients defined as

C =



0.10

0.15

0.05

0.20


, A0 =
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1 0.20 −0.15 −0.1

0 1 −0.15 0.20

0 0 1 −0.30

0 0 0 1
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,

A1 =



0.65 −0.10 0.10 0.05

0.20 0.60 0.10 −0.10

−0.10 −0.20 0.65 0.15

−0.05 −0.15 0.20 0.80


, A2 =



0.15 0 0.05 0

0.10 0.10 0.05 0

0 −0.01 0.10 0.05

0 −0.05 0.10 0.10


,

(B.3)

and abnormal shocks happening at t∗ = 501 with different size (measured in standard
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deviations) and persistence for each variable, defined as



ϵ1,t∗
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ρ1

ρ2

ρ3

ρ4


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
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0.9


. (B.4)

Since these shocks are substantially larger than observed in normally distributed series

of 600 periods, varying from 5 to 20 standard deviations, the series all jump at t∗ = 501,

and stay at unusually high levels for about 60 periods. Figure B.5 presents the time series

of the simulated variables y1,t to y4,t.

Figure B.5 Simulated series

Note: Simulated series with data generating process described in Appendix B, for 600 periods. All series
receive a simultaneous shock at t = 501, with different magnitudes and persistence.

I estimate two Bayesian VARs with these four series: with the standard Minnesota

Prior (baseline), where I do not take into account the large shock observed at t∗ = 501,

and with the Pandemic Priors, treating the first 24 periods when the shock happens with

the time dummies (t = 501, ..., 524).10

In Figure B.6, I compare the baseline (blue bars) and Pandemic Priors (pink bars)

posterior distributions of the estimated reduced-form autoregressive coefficients (main

10The results are robust to extending the period covered by the time dummies to the whole 60 obser-
vations with unusually high levels, but 24 periods are sufficient to recover the original data generating
process. I estimate both the baseline Minnesota Prior and the Pandemic Priors with fairly loose overall
prior tightness (λ = 5), but the results are also robust to tighter priors.
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Figure B.6 Posterior draws for the autoregressive coefficients

Note: Histograms of the (reduced-form) autoregressive coefficient of the baseline (blue bars) and the
Pandemic Priors (pink bars) estimations, for each variable in the information set, compared with the data
generating process (D.G.P.). Distributions constructed after 1,000 draws from the posterior distribution.
The VAR is estimated for 600 simulated periods.

diagonal of the matrix B1 = A−1
0 A1) with the true coefficient known from the data gen-

erating process. Two results stand out from this exercise. First, the larger and persistent

the shock is, the more distant the estimated baseline coefficient is from the true value.

For y4,t, for example, the true coefficient is not even on the support estimated by the

baseline Minnesota Prior. The Pandemic Priors, in turn, successfully incorporates the

true coefficient within its posterior support. For y1,t, where the shock was considerably

smaller and less persistent, both methods manage to have the true coefficient on their

supports. The second result is that, when facing such unusually large shocks, there is

considerably more uncertainty on the autoregressive coefficients with the baseline Min-

nesota Prior than with the Pandemic Priors. The distributions of the baseline posterior

coefficients are wider than the Pandemic Priors, indicating that the baseline method had

a harder time finding coefficients that fit well with the data.
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